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Abstract
A new formalism is presented for high-energy analysis of the Green function
for Fokker–Planck and Schrödinger equations in one dimension. Formulae for
the asymptotic expansion in powers of the inverse wave number are derived,
and conditions for the validity of the expansion are studied through the analysis
of the remainder term. This method is applicable to a large class of potentials,
including the cases where the potential V (x) is infinite as x → ±∞. The
short-time expansion of the Green function is also discussed.

PACS numbers: 03.65.Nk, 02.30.Hq, 02.50.Ey

1. Introduction

The one-dimensional diffusion in an external potential V (x) is described by the Fokker–Planck
equation [1]

∂

∂t
P (x, t) = ∂2

∂x2
P(x, t) − 2

∂

∂x
[f (x)P (x, t)], (1.1)

where f (x) is related to the potential V (x) by

f (x) = −1

2

d

dx
V (x). (1.2)

With P(x, t) ≡ e−k2tφ(x), equation (1.1) reduces to the time-independent form

− d2

dx2
φ(x) + 2

d

dx
[f (x)φ(x)] = k2φ(x). (1.3)

In addition to being a fundamental equation for nonequilibrium phenomena, the Fokker–
Planck equation is of particular importance in its relation to the Schrödinger equation. Setting

1751-8113/07/308683+25$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8683

http://dx.doi.org/10.1088/1751-8113/40/30/006
mailto:toru.miyazawa@gakushuin.ac.jp
http://stacks.iop.org/JPhysA/40/8683


8684 T Miyazawa

φ(x) ≡ e−V (x)/2ψ(x), we can transform (1.3) into a steady-state Schrödinger equation

− d2

dx2
ψ(x) + VS(x)ψ(x) = Eψ(x), (1.4)

where E = k2, and

VS(x) = f 2(x) + f ′(x). (1.5)

Historically, methods developed for the Schrödinger equation have been applied to the study of
the Fokker–Planck equation. But this should be the other way around as well. Theoretically, the
Fokker–Planck equation is often more convenient to deal with than the Schrödinger equation.
With the Fokker–Planck equation we can carry out a more systematic analysis, and the results
obtained for the Fokker–Planck equation can be applied to quantum-mechanical problems
described by the Schrödinger equation. In this paper, we study the high-energy (large-|k|)
behaviour of the Green function for (1.3) or, equivalently, (1.4). Although we shall mainly
work with the Fokker–Planck equation, the results of this paper are directly applicable to the
Schrödinger equation, too.

One-dimensional quantum scattering has a long history. In particular, high-energy
asymptotic behaviour of the Green function and related functions have been studied over
the decades by both physicists and mathematicians. This classical topic has recently attracted
attention in connection with inverse problems and the theory of integrable systems, and this
area of research remains active even to the present day [2]–[17].

An essential matter in the study of an asymptotic expansion is the estimation of the
remainder term. In conventional methods, which are mostly based on an integral equation,
it is necessary to impose strong conditions on the potential in order to control the remainder
term. For example, the integrability of VS is often required. For non-integrable VS, different
specific methods need to be used. There has not yet been a formalism in which the asymptotic
analysis of the Green function can be carried out systematically and in a unified way for a
variety of potentials that may not necessarily be integrable and that may not even be finite as
|x| → ∞. In this paper, we take a totally new approach to this problem, and present a new
method for the high-energy analysis of the Green function which is applicable to a larger class
of potentials.

Our method is based on the analysis of reflection coefficients. Reflection coefficients
are fundamental quantities in scattering theory, and they serve as building blocks for
constructing the Green function. The Green function can be expressed solely in terms of
reflection coefficients for semi-infinite intervals [18]. High-energy behaviour of the reflection
coefficients was studied in a previous paper [19], and formulae for their asymptotic expansion
were derived there. In the present paper, we apply these results to the Green function, and
derive the expansion in powers of the inverse wave number. The coefficients of the expansion
are expressed in a simple form in terms of a linear operator, and the remainder term is
expressed in terms of transmission and reflection coefficients for finite intervals. The validity
of the asymptotic expansion can be studied by using this expression for the remainder term.
The short-time expansion of the Green function can also be obtained by this method.

We assume that the (Fokker–Planck) potential V (x) is a real function which is finite for
finite x, and which either converges to a finite limit or diverges to infinity (+∞ or −∞) as
x → ±∞. The quantity k is taken to be a complex number with Im k � 0.

In sections 2 and 3, we review the relevant results of previous papers. We derive the
asymptotic expansion of the Green function in sections 4–6, and discuss the conditions for its
validity in sections 7 and 8. In section 9, the short-time expansion is studied. In section 10,
we explain how our method can be applied to the Schrödinger equation. Various examples are
given in section 11.
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2. Reflection coefficients and the Green function

We define the time-dependent Green function GF(x, y; t) as the solution of[
∂

∂t
− ∂2

∂x2
+ 2

∂

∂x
f (x)

]
GF(x, y; t) = δ(x − y)δ(t) (2.1)

with the condition that GF(x, y; t) = 0 for t < 0. Physically, GF(x, y; t) is the probability
density of finding the diffusing particle at position x at time t, under the condition that it was
initially at position y. We also define its Fourier transform

GF(x, y;ω) ≡
∫ ∞

0
eiωtGF(x, y; t) dt. (2.2)

This GF(x, y;ω) is the Green function for equation (1.3) with k2 = iω. In the same way, we
define the retarded Green function for the Schrödinger equation as the solution of[

i
∂

∂t
+

∂2

∂x2
− VS(x)

]
GS(x, y; t) = δ(x − y)δ(t) (2.3)

satisfying the condition GS(x, y; t) = 0 for t < 0. Its Fourier transform defined by

GS(x, y;E) ≡
∫ ∞

0
eiEtGS(x, y; t) dt (2.4)

is the Green function for the steady-state Schrödinger equation (1.4), satisfying[
∂2

∂x2
− VS(x) + E

]
GS(x, y;E) = δ(x − y). (2.5)

It is easy to see that GF and GS are related by

GF(x, y;ω) = −e−[V (x)−V (y)]/2GS(x, y;E = iω). (2.6)

For convenience, we define

G(x, y; k) ≡ 2ikGS(x, y;E = k2) (2.7)

as a function of complex k, and deal with this G instead of GF or GS. (We shall refer to G
as the Green function, too.) Since G(x, y; k) = G(y, x; k), without loss of generality we
assume that x � y.

To introduce our basic expression for the Green function, let us first define the transmission
and reflection coefficients for finite intervals. We consider an interval (x1, x2), and define

V̄ (x) ≡



V (x1) (x < x1)

V (x) (x1 � x � x2),

V (x2) (x2 < x)

f̄ (x) ≡ −1

2

d

dx
V̄ (x). (2.8)

Namely, V̄ (x) is identical to V (x) within (x1, x2) and constant outside this interval. We
consider equation (1.3) with f (x) replaced by f̄ (x):

− d2

dx2
φ(x) + 2

d

dx
[f̄ (x)φ(x)] = k2φ(x). (2.9)

(In general, the left-hand side of this equation contains delta functions at x = x1 and x = x2

coming from the derivative of f̄ .) Since f̄ (x) = 0 for x < x1 and x > x2, equation (2.9) has
two solutions of the form

φ1(x) =
{

τ(x2, x1; k) e−ik(x−x1) x < x1,

e−ik(x−x2) + Rr(x2, x1; k) eik(x−x2) x > x2,
(2.10a)
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φ2(x) =
{

eik(x−x1) + Rl(x2, x1; k) e−ik(x−x1) x < x1,

τ (x2, x1; k) eik(x−x2) x > x2.
(2.10b)

The transmission coefficient τ , the right reflection coefficient Rr , and the left reflection
coefficient Rl for the interval (x1, x2) are defied by (2.10).

We can let x1 → −∞ in (2.10a) or x2 → +∞ in (2.10b) to define the reflection
coefficients for semi-infinite intervals:

Rr(x2,−∞; k) = lim
x1→−∞ Rr(x2, x1; k), Rl(∞, x1; k) = lim

x2→+∞ Rl(x2, x1; k). (2.11)

Let us define

Sr(x, k) ≡ Rr(x,−∞; k)

1 + Rr(x,−∞; k)
, Sl(x, k) ≡ Rl(∞; x; k)

1 + Rl(∞, x; k)
, (2.12)

and

S(x, k) ≡ Sr(x, k) + Sl(x, k). (2.13)

It was shown in [18] that the Green function can be expressed in terms of this S as

G(x, y; k) = 1√
[1 − S(x, k)][1 − S(y, k)]

exp

[
ik(x − y) − ik

∫ x

y

S(z, k) dz

]
. (2.14)

The logarithm of (2.14) reads

log G(x, y; k) = ik(x − y) − ik
∫ x

y

S(z, k) dz − 1

2
log[1 − S(x, k)] − 1

2
log[1 − S(y, k)].

(2.15)

We shall carry out the analysis of the Green function on the basis of this expression.

3. High-energy expansion formula for the reflection coefficients

In this section, we review the formulae derived in [19] for the high-energy expansion of the
reflection coefficients. Here we deal only with Rr . (Corresponding formulae for Rl can
be obtained in the same way.) First, we define the generalized transmission and reflection
coefficients, with an additional argument ξ , as

R̄r (x, y; ξ ; k) ≡ Rr(x, y; k) − ξ

1 − ξRr(x, y; k)
, (3.1a)

R̄l(x, y; ξ ; k) ≡ Rl(x, y; ξ ; k) +
ξτ 2(x, y; ξ ; k)

1 − ξRr(x, y, ξ ; k)
, (3.1b)

τ̄ (x, y; ξ ; k) ≡
√

1 − ξ 2τ(x, y; k)

1 − ξRr(x, y; k)
. (3.1c)

We also define the operator M which acts on functions of x and ξ as

Mg(x, ξ) ≡ −f (x)[(ξ − ξ−1)g(x, ξ) + ξ−1g(x, 0)] + ξ−1
∫ ξ

0
dξ

∂

∂x
g(x, ξ), (3.2)

where g(x, ξ) is an arbitrary function, and f (x) is the function in (1.1)–(1.3).
It was shown in [19] that, for an arbitrary nonnegative integer N,

R̄r (x,−∞; ξ ; k) = −ξ +
1

2ik
c̄1(x, ξ) +

1

(2ik)2
c̄2(x, ξ) + · · ·

+
1

(2ik)N
c̄N(x, ξ) + δ̄N (x, ξ, k), (3.3)
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where

c̄n(x, ξ) = −(1 − ξ 2)Mn−1f (x), (3.4)

δ̄N (x, ξ ; k) = 1

(2ik)N

∫ x

−∞
τ̄ 2(x, z; ξ ; k)KN(z, R̄l(x, z; ξ ; k)) dz, (3.5)

Kn(x, ξ) ≡ −
(

1 + ξ
∂

∂ξ

)
1

1 − ξ 2
c̄n+1(x, ξ). (3.6)

In (3.5), KN(z, R̄l(x, z; ξ ; k)) is the quantity obtained from KN(z, ξ) by the substitution
ξ → R̄l(x, z; ξ ; k). It is convenient to define

c̃n(x, ξ) ≡ 1

1 − ξ 2
c̄n(x, ξ), (3.7)

so that (3.4) and (3.6) read

c̃n(x, ξ) = −Mn−1f (x), (3.8)

Kn(x, ξ) = −
(

1 + ξ
∂

∂ξ

)
c̃n+1(x, ξ). (3.9)

It is easy to calculate c̃n from (3.8) by using definition (3.2). We have

c̃1 = −f, c̃2 = −f ′ + f 2ξ, c̃3 = −f ′′ + f 3 + 2ff ′ξ − f 3ξ 2,

c̃4 = −f ′′′ + 5f 2f ′ − (2f 4 − f ′2 − 2ff ′′)ξ − 3f 2f ′ξ 2 + f 4ξ 3, etc.
(3.10)

Obviously c̃n is an (n − 1)th-degree polynomial in ξ , whose coefficients consist of the powers
of f and its derivatives. The Kn’s are obtained from (3.9) and (3.10) as

K0 = f, K1 = f ′ − 2f 2ξ, K2 = f ′′ − f 3 − 4ff ′ξ + 3f 3ξ 2,

K3 = f ′′′ − 5f 2f ′ + 2(2f 4 − f ′2 − 2ff ′′)ξ + 9f 2f ′ξ 2 − 4f 4ξ 3, etc.
(3.11)

Equations (3.3)–(3.6) hold for any f (x) as long as c̄n and δ̄N make sense. However, (3.3)
is meaningful as a high-energy expression only if

lim
|k|→∞

kN δ̄N(x, ξ, k) = 0. (3.12)

Using (3.5) with (3.9), we can study the conditions for (3.12) to hold. For simplicity, let us
assume that f (x) and all its derivatives are monotone for sufficiently large |x|. (This condition
is unnecessarily strong and can be relaxed, but we make this assumption in order to simplify
the presentation.) Then it can be shown1 that

(i) When |k| → ∞ with fixed arg k in the range 0 < arg k < π , equation (3.12) holds if
(f is (N − 1) times differentiable and) f (N−1) is continuous and piecewise smooth2.

(ii) When |k| → ∞ with fixed Im k > 0, equation (3.12) holds if f (N−1) is continuous and
piecewise smooth, and if limz→−∞ f (z)ecz = 0 for any positive number c.

(iii) When |k| → ∞ with Im k = 0, equation (3.12) holds if f (N−1) is continuous and
piecewise smooth, and if f (−∞) is finite.

This means that if the conditions in (i), (ii) or (iii) hold, then (3.12) holds in the region (i)
ε � arg k � π − ε, (ii) Im k � ε, (iii) Im k � 0, respectively, where ε is an arbitrary positive
number. (We shall always let ε stand for a positive quantity.)

1 The proof is given in [19] only for ξ = 0, but this is sufficient. (See the comment below equation (5.16) of [19].)
If (3.12) holds for ξ = 0 then it holds for any ξ . This can be easily shown by substituting the expansion of Rr

(equation (3.3) with ξ = 0) into the right-hand side of (3.1a).
2 This last condition is described as ‘piecewise differentiable’ in [19], but it should properly be ‘piecewise
continuously differentiable’ or ‘piecewise smooth’ to avoid some pathological situations.
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4. Expansion of S

We wish to derive the 1/k-expansion of log G from (2.15) by using the formulae given in the
previous section. To do so, we need to study the expansion of S and log(1 − S). From (2.12)
and (3.1a), we find

Sr(x, k) = lim
ξ→−1

1

1 − ξ 2
[R̄r (x,−∞; ξ ; k) + ξ ]. (4.1)

Therefore, the expansion of Sr is obtained by substituting (3.3) into (4.1) as

Sr(x, k) = 1

2ik
s1(x) +

1

(2ik)2
s2(x) + · · · +

1

(2ik)N
sN(x) + σ r

N(x, k), (4.2)

where, using definition (3.7),

sn(x) = c̃n(x,−1), (4.3)

σ r
N(x, k) = lim

ξ→−1

1

1 − ξ 2
δ̄N (x, ξ, k). (4.4)

Setting ξ = −1 in (3.10), we have

s1 = −f, s2 = −f ′ − f 2, s3 = −f ′′ − 2ff ′,
s4 = −f ′′′ − 2ff ′′ − f ′2 + 2f 2f ′ + f 4

s5 = −f (4) − 2ff ′′′ − 2f ′f ′′ + 4f 2f ′′ + 8f (f ′)2 + 8f 3f ′, etc. (4.5)

Substituting (3.5) with (3.1) into (4.4) gives the expression for σ r
N ,

σ r
N(x, k) = 1

(2ik)N

∫ x

−∞

[
τ(x, z; k)

1 + Rr(x, z; k)

]2

KN(z, ηl) dz, (4.6)

where we have defined

ηl ≡ Rl(x, z; k) − τ 2(x, z; k)

1 + Rr(x, z; k)
. (4.7)

The expressions for Sl corresponding to (4.2), (4.6) and (4.7) can be derived in the same
way, using the analogues of the formulae of section 3 for Rl . The result is

Sl(x, k) = 1

(−2ik)
s1(x) +

1

(−2ik)2
s2(x) + · · · +

1

(−2ik)N
sN(x) + σ l

N(x, k), (4.8)

σ l
N(x, k) = −1

(−2ik)N

∫ ∞

x

[
τ(z, x; k)

1 + Rl(z, x; k)

]2

KN(z, ηr) dz, (4.9)

ηr ≡ Rr(z, x; k) − τ 2(z, x; k)

1 + Rl(z, x; k)
. (4.10)

The coefficients sn in (4.8) are the same ones as in (4.2). The expansion of S(x, k)

(equation (2.13)) is obtained by adding (4.2) and (4.8):

S(x, k) = 2

[
1

(2ik)2
s2(x) +

1

(2ik)4
s4(x) + · · · +

1

(2ik)N
′ sN ′(x)

]
+ σN(x, k), (4.11)

σN(x, k) ≡ σ r
N(x, k) + σ l

N(x, k), (4.12)

where

N ′ ≡
{
N (N even)

N − 1 (N odd).
(4.13)

Note that σN+1 = σN for any even number N.
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Obviously, a sufficient condition for

lim
|k|→∞

kNσN(x, k) = 0 (4.14)

is that the following two equations hold:

lim
|k|→∞

kNσ r
N(x, k) = 0, lim

|k|→∞
kNσ l

N(x, k) = 0. (4.15)

From (4.4) we can see that the first equation of (4.15) holds if (3.12) holds. (The limit ξ → −1
does not interfere with the limit |k| → ∞. We can also show this directly by substituting the
expansion of Rr into the first equation of (2.12).) Therefore, the first equation of (4.15) holds
under the conditions given in section 3. The conditions for the second equation are obvious
analogues. Hence it is apparent that (4.14) holds in the sector ε � arg k � π − ε if f (N−1) is
continuous and piecewise continuous differentiable. If, in addition, both f (+∞) and f (−∞)

are finite, then (4.14) holds for 0 � arg k � π .

5. Expansion of log(1 − S)

From (4.11) we can derive the expansion of log(1 − S) as

−1

2
log[1 − S(x, k)] = 1

(2ik)2
α2(x) +

1

(2ik)4
α4(x) + · · · +

1

(2ik)N
′ αN ′(x) + ρN(x, k),

(5.1)

where the coefficients α2, α4, α6, . . . are expressed in terms of {sn} as

α2i = 1

2

∞∑
m=1

2m

m

∑
{j1,...jm}
�jn=i

s2j1s2j2 · · · s2jm
. (5.2)

(The second sum in (5.2) is over jn = 1, 2, 3, . . . for each n (1 � n � m) with the constraint∑m
n=1 jn = i.) The remainder term ρN of (5.1) can be written as

ρN = 1

2

∞∑
m=1

1

m

(
σN

1 − AN

)m

+


−1

2
log (1 − AN) −

N ′/2∑
n=1

α2n

(2ik)2n


 , (5.3)

where AN ≡ 2
∑N ′/2

n=1 s2n/(2ik)2n, so that S = AN + σN (see (4.11)). The quantity in the
brackets on the right-hand side of (5.3) is O(1/|k|N+1) as |k| → ∞. Hence

ρN = 1
2σN [1 + o(1)] + O(1/|k|N+1) (|k| → ∞) (5.4)

provided that σN vanishes as |k| → ∞. Note also that

ρN = ρN+1 (N even), ρN = ρN+1 +
αN+1

(2ik)N+1
(N odd). (5.5)

The coefficients α2, α4, . . . of (5.1), which are given by (5.2), can be expressed in a more
compact form. From equations (A.3) of appendix A, we obtain

−1

2

∂

∂x
log[1 − S(x, k)] = f (x) + ik[Sr(x, k) − Sl(x, k)]. (5.6)

Substituting (4.2) and (4.8) into the right-hand side of (5.6) yields

−1

2

∂

∂x
log[1 − S(x, k)] = 1

(2ik)2
s3(x) +

1

(2ik)4
s5(x) +

1

(2ik)6
s7(x) + · · · , (5.7)
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where we have used s1 = −f . Comparing (5.1) with (5.7) we find that (d/dx)αn(x) = sn+1(x)

for any even number n. Integrating both sides of this equation gives

αn(x) =
∫ x

sn+1(z) dz. (5.8)

The integral on the right-hand side is uniquely determined in such a way that αn includes no
additional integration constant when expressed in terms of f and its derivatives. For example,
s3 = −(f 2 + f ′)′, s5 = (2f 4 + 4f 2f ′ − 2ff ′′ + f (3))′, as can be seen from (4.5). In this way,
sm is a total derivative for odd m � 3. Hence we have

α2 = −f 2 − f ′, α4 = 2f 4 + 4f 2f ′ − 2ff ′′ + f (3), etc. (5.9)

If f (−∞) = 0 or f (+∞) = 0, we can write the right-hand side of (5.8) as
∫ x

−∞ sn+1(z) dz

or − ∫ ∞
x

sn+1(z) dz. But (5.8) holds even if neither f (−∞) = 0 nor f (+∞) = 0.
Equations (5.1) and (5.6) also give the relation between the remainder terms

∂

∂x
ρN(x, k) = ik

[
σ r

N+1(x, k) − σ l
N+1(x, k)

]
. (5.10)

6. The 1/k-expansion of log G

Substituting (4.11), (5.1) and (5.8) into (2.15), we obtain, for any integer N � 0,

log G(x, y; k) = ik(x − y) +
1

2ik
a1(x, y) +

1

(2ik)2
a2(x, y) +

1

(2ik)3
a3(x, y)

+ · · · +
1

(2ik)N
aN(x, y) + �N(x, y; k), (6.1)

where

an(x, y) = −
∫ x

y

sn+1(z) dz (n odd), (6.2a)

an(x, y) =
∫ x

sn+1(z) dz +
∫ y

sn+1(z) dz (n even), (6.2b)

�N(x, y; k) = −ik
∫ x

y

σN+1(z, k) dz + ρN(x, k) + ρN(y, k). (6.3)

We can also write the right-hand side of (6.2b) as αn(x) + αn(y) with αn given by (5.2).
For (6.1) to be meaningful as a high-energy expansion, �N must satisfy

lim
|k|→∞

kN�N(x, y; k) = 0. (6.4)

Let us study the conditions for (6.4) using expression (6.3). We first remark that (5.4) and
(5.5) imply

ρN = 1
2σN+1[1 + o(1)] + O(1/|k|N+1) (|k| → ∞). (6.5)

Now suppose that lim|k|→∞ kN+1σN+1 = 0. Then,

lim
|k|→∞

kN+1
∫ x

y

σN+1(z, k) dz = 0, lim
|k|→∞

kNρN = 0, (6.6)

and so (6.4) holds. (Since |σN+1(z, k)| is uniformly bounded in the interval y < z < x, the
limit |k| → ∞ and the integral can be interchanged. The second equation follows from (6.5).)
We know that lim|k|→∞ kN+1σN+1 = 0 is satisfied under the conditions stated at the end of
section 4, with N replaced by N + 1. Hence it follows that (6.4) holds for ε � arg k � π − ε

if f (N) is continuous and piecewise continuously differentiable. It holds for 0 � arg k � π if,
in addition, both f (−∞) and f (+∞) are finite.
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7. Validity of (6.4) for discontinuous f (N )

The conditions for (6.4) mentioned at the end of the last section are sufficient conditions, not
necessary ones. Here we show that f (N) need not be continuous for (6.4) to hold.

Suppose that f (z) is (M −1) times continuously differentiable, f (M−1)(z) is continuously
differentiable except at z = 0, and that f (M) has a finite jump at z = 0:

f (M)(z) = Cθ(z) + · · · . (7.1)

Here θ(z) is the Heaviside step function, and C is a constant. Then f (M+1) contains a delta
function as f (M+1)(z) = Cδ(z) + · · ·. It is easy to show that Kn (equation (3.9)) has the form
Kn = f (n) + · · ·, where the remaining terms on the right-hand side do not contain derivatives
of order n or higher. (See (3.11).) Therefore,

KM+1(z, ξ) = Cδ(z) + · · · . (7.2)

Substituting this into (4.6) and (4.9) with N = M + 1, and then into (4.12), we have

σM+1(z, k) = C

(2ik)M+1

∫ z

−∞

[
τ(z,w)

1 + Rr(z,w)

]2

δ(w) dw

− C

(−2ik)M+1

∫ ∞

z

[
τ(w, z)

1 + Rl(w, z)

]2

δ(w) dw + · · ·

= C

(2ik)M+1

{[
τ(z, 0)

1 + Rr(z, 0)

]2

θ(z) + (−1)M
[

τ(0, z)

1 + Rl(0, z)

]2

θ(−z)

}
+ · · · . (7.3)

The quantity in the curly brackets in the last line of (7.3) does not vanish as |k| → ∞ when
k is real. (See (A.2).) But its integral does vanish in this limit even when Im k = 0. Indeed,
using (A.5), (A.1) and (A.2) of appendix A we find∫ x

y

{[
τ(z, 0)

1 + Rr(z, 0)

]2

θ(z) + (−1)M
[

τ(0, z)

1 + Rl(0, z)

]2

θ(−z)

}
dz

= 1

2ik
[(e2ikx − e2ik max(y,0))θ(x) + (−1)M(e−2iky − e−2ik min(x,0))θ(−y)]

+ o(1/|k|) (|k| → ∞, 0 � arg k � π). (7.4)

Assuming that the part represented by ‘· · ·’ in (7.3) is o(1/|k|M+1), we have

σM+1(z, k) = O(1/|k|M+1),

∫ x

y

σM+1(z, k) dz = o(1/|k|M+1), (7.5)

and, from (6.5),

ρM(z, k) = O(1/|k|M+1). (7.6)

From (6.3), (7.5) and (7.6) it follows that �M = o(1/|k|M), so (6.4) holds for N = M in spite
of the discontinuity of f (M).

The same argument holds when f (M) has two or more finite jumps. In summary, the
following conclusion can be drawn.

(i) If f is (N − 1) times continuously differentiable and f (N−1) is piecewise continuously
differentiable, and if f (N) is piecewise continuously differentiable, then (6.4) holds in the
angular region ε � arg k � π − ε with arbitrary ε > 0. (Here f (N) may possibly have a
finite number of finite jumps.)

(ii) If the conditions of (i) are satisfied, and if limz→+∞ f (z)e−cz = limz→−∞ f (z)ecz = 0
for any c > 0, then (6.4) holds in the half plane Im k � ε with arbitrary ε > 0.
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(iii) If the conditions of (i) are satisfied, and if both f (+∞) and f (−∞) are finite, then (6.4)
holds in the upper half plane Im k � 0 including the real axis.

(As noted below equation (3.12), we are assuming that f (z) and its derivatives are monotone
for sufficiently large |z|, at both z → +∞ and z → −∞.)

The conditions of (i) are still not necessary conditions. Actually, (6.4) may hold even
when f is not (N − 1) times differentiable, as will be shown in the following section.

8. Effects of the jump of f (M ) at higher orders

Here we show that (6.4) may hold even for N � M+1 when f (M) has a discontinuity as in (7.1).
To this end, let us study �M+1,�M+2, . . . for the case of (7.1). Since KM+2 = f (M+2) + · · ·,
we have

KM+2(z, ξ) = Cδ′(z) + · · · , (8.1)

where δ′ is the derivative of the delta function. As before, we substitute (8.1) into (4.6) and
(4.9), and then into (4.12). After integrating by parts, we obtain

σM+2(z, k) = C

(2ik)M+2

{
δ(z) − ∂

∂w

[
τ(z,w)

1 + Rr(z,w)

]2 ∣∣∣∣
w=0

θ(z)

}

+
C

(−2ik)M+2

{
δ(z) +

∂

∂w

[
τ(w, z)

1 + Rl(w, z)

]2 ∣∣∣∣
w=0

θ(−z)

}
+ · · · . (8.2)

Using (A.4) of appendix A, we can write (8.2) as

σM+2(z, k) = C

(2ik)M+1

{[
τ(z, 0)

1 + Rr(z, 0)

]2

θ(z) + (−1)M
[

τ(0, z)

1 + Rl(0, z)

]2

θ(−z)

}

+
2C

(2ik)M+2
AMδ(z) + · · · , (8.3)

where

AM ≡
{

1 (M even)

0 (M odd).
(8.4)

In (8.3), we have disregarded the terms of order 1/kM+2 which have the form Q(z, k)/(2ik)M+2

with Q(z, k) such that
∫ x

y
Q(z, k) dz vanishes as |k| → ∞. Such terms are irrelevant to the

following discussion. In addition to Cδ′(z), the right-hand side of (8.1) contains another
singular term proportional to f (z)δ(z), but the contribution from this term can be disregarded
for the same reason. We assume that the contribution to (8.3) from non-singular terms of
KM+2 is o(1/|k|M+2) as |k| → ∞.

Now we consider the two cases, y < 0 < x and 0 < y < x.

(a) y < 0 < x.
The integral of (8.3) can be calculated by using (7.4). For the case y < 0 < x, we have∫ x

y

σM+2(z, k) dz = C

(2ik)M+2
[e2ikx + (−1)Me−2iky] + o(1/|k|M+2). (8.5)

(Note that the contribution from the delta function in (8.3) is cancelled). From (5.4), (7.3) and
(A.2) (or from (6.5), (8.3) and (A.2)) we obtain

ρM+1(x, k) = C

2(2ik)M+1
e2ikx + o(1/|k|M+1), (8.6a)
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ρM+1(y, k) = (−1)M
C

2(2ik)M+1
e−2iky + o(1/|k|M+1). (8.6b)

On substituting (8.5), (8.6a) and (8.6b) into (6.3) with N = M + 1, the terms of order 1/kM+1

cancel out, and we have

�M+1(x, y; k) = o(1/|k|M+1) (|k| → ∞). (8.7)

Namely, (6.4) holds for N = M + 1.
The effect of the discontinuity of f (M) on �M+2,�M+3 etc can be studied in the same

way. Singular terms involving derivatives of the delta function such as Cδ′′, Cδ′′′, . . . appear
in KM+3,KM+4, . . . , respectively, but they cause no problems. Singular contributions coming
from these terms cancel out in the expressions for �M+2,�M+3 etc, as we have seen above
for �M+1. (The explanation is omitted here, but the cancellation between ik

∫
σN+1 dz and

ρN is guaranteed by relation (5.10).) As a result, the derivatives of the delta function do not
produce a term of order 1/kN (or lower) in �N . In (6.2) and (6.3), the delta function and its
derivatives appear only within an integral, and these expressions are well defined3 as long as
n,N � 2M + 1.

However, (6.3) is not well defined for N = 2M + 2 since the square of the delta function
appears in it. We can easily see that K2M+3 contains a term proportional to (f (M+1))2 = C2δ2.
In addition, terms proportional to f (M+1+i)f (M+1−i) (i = 1, 2, . . .) are contained in K2M+3.
These terms are ill defined, too, since they produce the square of the delta function by
integration by parts. To study �2M+2, we need to go back one step, as we cannot directly use
(6.3). By induction, it can be shown that

K2M+2 = f (2M+2) − 4ξ

M+1∑
i=1

f (M+i)f (M+1−i) + · · · . (8.8)

The terms explicitly shown in (8.8) are the ones that give rise to the ill-defined terms in
K2M+3. We substitute (8.8) into the expression for �2M+1. Then we can study �2M+2 by using
this expression together with the relation �2M+2 = �2M+1 − a2M+2/(2ik)2M+2. After some
calculation4 we find that �2M+2 contains a term of order 1/k2M+2 as

�2M+2 = 1

(2ik)2M+2

(−1)M

2
C2 + · · · . (8.9)

So (6.4) does not hold for N = 2M +2. We can see that (8.9) gives correction to the coefficient
of order 2M + 2 as

log G = ik(x − y) +
1

2ik
a1 + · · · +

1

(2ik)2M+2
[a2M+2 + (−1)MC2/2] + · · · . (8.10)

Thus, the correct coefficient of order 2M + 2 is not a2M+2 but a2M+2 + (−1)MC2/2.
In summary, when f (M) has a finite jump of the form (7.1), and when the jump is located

between y and x, equation (6.4) holds for N � 2M + 1 in the sector ε � arg k � π − ε

provided that the part represented by ‘· · ·’ in (7.1) is sufficiently differentiable. If, in addition,

3 Needless to say,
∫ b

a
g(z)δ(m)(z)dz = (−1)mg(m)(0) for a < 0 < b. In (6.2) and (6.3), the function multiplying

δ(m) is always m times continuously differentiable if n � 2M + 1 (for (6.2)) or N � 2M (for (6.3)). An expression
like

∫ b

a
θ(z)g(z)δ(z)dz = θ(0)g(0) may appear in �2M+1, where θ(0) = 1/2.

4 It turns out that only the first term on the right-hand side of (8.8) is relevant. Anomalous contribution comes
from where θ(0) appears in formal calculation whereas it should really be θ(0 + ε) or θ(0 − ε). For example,
ik

∫ x

0 θ(z)g(z)eikzdz = −g(0) + g(x)eikx + o(1) (|k| → ∞), where the first term on the right-hand side is not
−θ(0)g(0) = −g(0)/2 but −θ(0 + ε)g(0). In deriving (8.9), we also use the 1/k-expansion of Rr, Rl and τ for finite
intervals. (See the comments below (A.2) in appendix A.) In the expansion, we need only to keep track of the terms
which are linear in f and its derivatives.



8694 T Miyazawa

f (−∞) and f (+∞) are both finite, then (6.4) holds for N � 2M + 1 even for real k. In any
case, (6.4) does not hold for N � 2M + 2. Although log G can be asymptotically expanded in
powers of 1/k even beyond the term of order 1/k2M+2, the coefficients an given by (6.2) are
not correct for n � 2M + 2. In particular, a2M+2 is shifted by (−1)MC2/2 as in (8.10). (See
examples 5–8 of section 11.)

(b) 0 < y < x.
Similarly, for 0 < y < x we have, by using (7.4),∫ x

y

σM+2(z, k) dz = C

(2ik)M+2
(e2ikx − e2iky) + o(1/|k|M+2), (8.11)

ρM+1(y, k) = C

2(2ik)M+1
e2iky + o(1/|k|M+1), (8.12)

while the expression for ρM+1(x, k) is the same as (8.6a). Substituting (8.11), (8.6a) and
(8.12) into (6.3), we obtain

�M+1(x, y; k) = C

(2ik)M+1
e2iky + o(1/|k|M+1) (|k| → ∞). (8.13)

If the limit |k| → ∞ is taken with fixed arg k in the sector ε � arg k � π − ε, then
�M+1 = o(1/|k|M+1) since e2iky falls off exponentially. The same can be said for �M+2,�M+3,
and so on; the contribution to �N coming from the discontinuity of f (M) is exponentially small
at large |k| as long as ε � arg k � π − ε.

When k is real, however, kM+1�M+1 does not vanish as |k| → ∞. So, unlike case (a),
equation (6.4) does not hold for N � M + 1 when the limit is taken along the real axis. (See
example 6 of section 11.)

The case y < x < 0 can be treated in exactly the same way as (b). It is straightforward
to extend the arguments of (a) and (b) above to the cases where there are two or more such
discontinuities.

9. Short-time expansion of the Green function

The expansion of G is obtained by exponentiating (6.1) as

G = eik(x−y)

[
1 +

1

2ik
b1 +

1

(2ik)2
b2 + · · · +

1

(2ik)N
bN + �′

N

]
, (9.1)

where

bn(x, y) =
∞∑

m=1

1

m!

∑
�ji=n

aj1aj2 · · · ajm
, (9.2)

�′
N ≡ exp

[
N∑

m=1

am

(2ik)m
+ �N

]
−

N∑
m=0

bm

(2ik)m
. (9.3)

(Here the prime does not denote a derivative.) It is obvious that �′
N = o(1/|k|N) as |k| → ∞

if �N = o(1/|k|N).
The time-dependent Green function for the Fokker–Planck equation is obtained from

G(x, y; k) by the inverse Fourier transformation as

GF(x, y; t) = − 1

2π
e−[V (x)−V (y)]/2

∫ ∞

−∞

1

2iκ
G(x, y; κ) e−iωt dω, (9.4)



High-energy asymptotic expansion of the Green function 8695

where κ is defined by

κ2 ≡ iω, Im κ � 0. (9.5)

(When necessary, the integral in (9.4) is to be understood as
∫ ∞+iε
−∞+iε with positive infinitesimal

ε). By substituting (9.1) into (9.4) and carrying out the integration term by term, we can derive
an expansion of GF in powers of t. The result is

GF(x, y; t) = e−[V (x)−V (y)]/2

√
4πt

exp

[
− (x − y)2

4t

]
(1 + g1t + g2t

2 + g3t
3 + · · · + gN tN + �̃N),

(9.6)

where

gn(x, y) =
n∑

m=1

(−1)n(2n − m − 1)!

(m − 1)!(n − m)!

bm(x, y)

(x − y)2n−m
. (9.7)

(See appendix B for the derivation. The expression for �̃N is shown there). When x �= y, the
remainder term �̃N satisfies

lim
t→0

�̃N(x, y; t)

tN
= 0 (9.8)

if (6.4) is satisfied for ε � arg k � π − ε. (See appendix B). For (9.8) to hold, it is not
necessary that (6.4) hold for Im k = 0. So this short-time expansion is valid even when
f (±∞) are infinite. (Here we are assuming that t is real).

Note that the right-hand side of (9.7) is not infinite at x = y in spite of the appearance of
the 1/(x − y)2n−m. For x = y we have

gn(x, x) = b2n(x, x)

2n(2n − 1)!!
, (9.9)

as can be directly calculated. The right-hand side of (9.7) approaches (9.9) as y → x.

10. Application to the Schrödinger equation

From (4.5), we may note that sn for n � 2 can be expressed in terms of the Schrödinger
potential VS (equation (1.5)) and its derivatives

s2 = −VS, s3 = −V ′
S, s4 = V 2

S − V ′′
S , s5 = (

2V 2
S − V ′′

S

)′
, etc. (10.1)

This can be confirmed as follows. From (A.3c) of appendix A and (2.12), we can show that
Sr satisfies the differential equation

∂

∂x
Sr(x, k) = 2ikSr(x, k)[1 − Sr(x, k)] + f (x)[1 − 2Sr(x, k)]. (10.2)

Substituting (4.2) into (10.2), we obtain

s ′
n = sn+1 −

n∑
j=1

sj sn+1−j − 2f sn + f δn0. (10.3)

Hence it follows that the sn’s satisfy the recursion relation

sn+1 = s ′
n +

n−1∑
j=2

sj sn+1−j (n � 2), (10.4)
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where we have used s1 = −f . We can obtain s3, s4, s5, . . . from this recursion relation,
starting with s2 = −VS. Therefore, any sn (n � 2) can indeed be expressed in terms of VS

and its derivatives. Substituting (10.1) into (6.2), we have

a1 =
∫ x

y

VS(z) dz, a2 = −VS(x) − VS(y), a3 = −
∫ x

y

[
V 2

S (z) − V ′′
S (z)

]
dz,

(10.5)
a4 = 2V 2

S (x) − V ′′
S (x) + 2V 2

S (y) − V ′′
S (y), etc.

Substituting (10.5) into (6.1), and returning to definition (2.7), we can write

log GS(x, y;E) = − log 2i − log k + ik(x − y) +
1

2ik

∫ x

y

VS(z) dz

− 1

(2ik)2
[VS(x) + VS(y)] − 1

(2ik)3

∫ x

y

[
V 2

S (z) − V ′′
S (z)

]
dz + · · · . (10.6)

The recursion relation (10.4) is familiar in soliton theory. The quantities sn obtained from
it are, apart from the sign, identical to the conserved charge densities for the KdV equation
[14, 20]. It is known that these quantities also appear in the asymptotic expansion for Jost
solutions [16, 21]. Our results for the expansion of the Green function are valid even when
Jost solutions do not exist.

So far, we have been assuming that the Schrödinger equation was derived from the
Fokker–Planck equation (1.3). Let us now go in the opposite direction. To transform a
given Schrödinger equation into a Fokker–Planck equation, it is, in general, necessary to shift
the energy level. Let ψ0(x) be a solution of (1.4) with E = E0. Then the Schrödinger
equation (1.4) is equivalent to the Fokker–Planck equation

− d2

dx2
φ(x) + 2

d

dx
[f (x)φ(x)] = p2φ(x), (10.7)

where

φ(x) = ψ0(x)ψ(x), f (x) = d

dx
log ψ0(x), p ≡

√
k2 − E0, k2 = E. (10.8)

The relation between VS and f is now

VS(x) − E0 = f 2(x) + f ′(x). (10.9)

So (1.5) is a special case of (10.9) with E0 = 0. If we want f (x) to be real and finite for any
finite x, we need to choose E0 such that ψ0(x) > 0 for any finite x. We may take E0 to be the
ground state energy if VS has a bound state.

Equation (10.6) was derived by using (1.5), which corresponds to E0 = 0. However,
since the Schrödinger equation (1.4) is invariant under the replacements VS → VS − E0 and
k → p, expansion (10.6) is valid even when E0 �= 0. We can check this by an explicit
calculation. Suppose that E0 �= 0. Then it is obvious that a correct expression for log GS is
obtained by making the replacements VS → VS − E0 and k → p in (10.6) as

log GS(x, y;E) = − log 2i − log p + ip(x − y) +
1

2ip

∫ x

y

[VS(z) − E0] dz

− 1

(2ip)2
[VS(x) + VS(y) − 2E0] + · · · . (10.10)

If we rearrange (10.10) into an expansion in powers of 1/k by substituting

log p = log k − E0

2k2
− E2

0

4k4
+ · · · , p = k − E0

2k
− E2

0

8k3
+ · · · , 1

p
= 1

k
+

E0

2k3
+ · · · ,



High-energy asymptotic expansion of the Green function 8697

and so on, then it becomes (10.6). Thus, (10.6) holds for E0 �= 0 as well. Hence we know that
(6.1), too, is valid for E0 �= 0. (See example 8 of the next section. Note that G is not 2ipGS

but 2ikGS.) Unlike the coefficients an, the remainder term �N of (6.1) is not expressed solely
in terms of VS. But the conditions for the validity of (6.4) remain unchanged when E0 �= 0.
We can understand this by writing (10.10) with the remainder term, and then turning it into an
expansion in powers of 1/k as above.

Is is not difficult to interpret the results of sections 7 and 8 in the language of the
Schrödinger equation. We see from the second equation of (10.8) that the conditions on f can
be interpreted as the conditions on ψ0. For example, f (∞) takes a nonzero finite value when
the ground state wavefunction decays like e−cx as x → ∞. The differentiability conditions
on f can be directly related to the differentiability of VS. Namely, f is n times differentiable
if VS is (n − 1) times differentiable.

11. Examples

Let us consider some simple potentials for which the exact Green function can be obtained,
and compare the exact expression with our results for the expansion

log G(x, y; k) = ik(x − y) +
a1

2ik
+

a2

(2ik)2
+

a3

(2ik)3
+ · · · . (11.1)

The coefficients an are obtained from (6.2), (4.3) and (3.8). Explicit forms of the quantities sn

(equation (4.3)) are shown in (4.5) for n � 5. (Alternatively, we may use expressions (10.5)
in terms of VS.) We omit the derivation of the exact expressions.

Example 1. V (z) = 2z, f (z) = −1, VS(z) = 1.

As the simplest example, let us first consider a linear potential. Substituting f = −1 into
(4.5), and then into (6.2), we obtain the coefficients an as

a1 = x − y, a2 = −2, a3 = −x + y, a4 = 4, etc. (11.2)

The exact Green function for this potential is

G(x, y; k) = k√
k2 − 1

exp[i
√

k2 − 1(x − y)]. (11.3)

It is easy to see that (11.1) with (11.2) is the correct expansion of the logarithm of (11.3) for
Im k � 0. Since the exact log G(k) − ik(x − y) does not have any singularities in |k| > 1, the
right-hand side of (11.1) is a convergent infinite series for |k| > 1.

The short-time expansion (9.6) with gn calculated from (9.7) and (9.2) reads

GF(x, y; t) = e−(x−y) 1√
4πt

exp

[
− (x − y)2

4t

] (
1 − t +

t2

2
− t3

6
+ · · ·

)
. (11.4)

The series in parentheses on the right-hand side is
∑∞

n=0(−t)n/n! = e−t , so this expansion is
convergent for any t.

Example 2. V (z) = z2, f (z) = −z, VS(z) = z2 − 1.

Next, we consider a parabolic potential. This example satisfies conditions (i) and (ii) of
section 7 for any N but not (iii). From (6.2) and (4.5), we obtain

a1 = x3 − y3

3
− (x − y), a2 = 2 − (x2 + y2),

a3 = −x5 − y5

5
+

2(x3 − y3)

3
+ x − y, a4 = 2(x4 + y4) − 4(x2 + y2), etc.

(11.5)
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Figure 1. The imaginary and real parts of log G(x, y; k) − ik(x − y) for the potential V (z) = z2

(example 2), with x = 1 and y = 0, (a) plotted as functions of |k|, with arg k fixed at π/4;
(b) plotted as functions of Re k, with Im k fixed at 0.75. Solid lines: the exact values. Dashed
lines: expansion (11.1) to order 1/kN (N = 2 and 8).

The exact Green function for this potential can be expressed as

G(x, y; k) = −ik

2�
(− k2

4

)
�

(
1
2 − k2

4

)ψ+(x, k)ψ−(y, k), (11.6)

where

ψ±(x, k) ≡ e−x2/2

[
�

(
−k2

4

)
F

(
−k2

4
,

1

2
; x2

)
∓ 2x�

(
1

2
− k2

4

)
F

(
1

2
− k2

4
,

3

2
; x2

) ]
.

(11.7)

Here � is the gamma function, and F is the confluent hypergeometric function defined by
F(α, γ ; z) = ∑∞

n=0
α(α+1)···(α+n−1)

γ (γ +1)···(γ +n−1)
1
n!z

n. We can check that (11.1) with (11.5) is the correct
asymptotic expansion of the logarithm of (11.6) when arg k is fixed in 0 < arg k < π

(figure 1(a)). Now (11.1) is divergent as an infinite series. This asymptotic expansion is also
valid when Im k > 0 is kept fixed as |k| → ∞ (figure 1(b)). When Im k = 0, however, (11.1)
is not valid since log G(k) oscillates and does not vanish as |k| → ∞.

The short-time expansion (9.6) now reads

GF(x, y; t) = 1√
4πt

exp

[−x2 + y2

2
− (x − y)2

4t

]
(1 + g1t + g2t

2 + g3t
3 + · · ·), (11.8)



High-energy asymptotic expansion of the Green function 8699

where the gn’s are obtained from (9.7), (9.2) and (11.5) as

g1 = 1 − 1
3 (x2 + xy + y2), g2 = 1

6 − 1
3 (x2 + xy + y2) + 1

18 (x2 + xy + y2)2,

g3 = − 1
6 + 1

15xy + 1
30 (x2 + xy + y2) + 1

18 (x2 + xy + y2)2 − 1
162 (x2 + xy + y2)3.

(11.9)

The exact time-dependent Green function has the well-known form

GF(x, y; t) =
(

1

π [1 − exp(−4t)]

)1/2

exp

(
− [x − y exp(−2t)]2

1 − exp(−4t)

)
. (11.10)

The expansion of (11.10) indeed has the form (11.8) with (11.9). This GF(t) has singularities
in the complex t plane where exp(−4t) = 1. The nearest singularities to the origin are at
t = ±π i/2. So, the infinite series (11.8) is convergent for t < π/2. This is a typical case
where the short-time expansion is convergent for small t although the high-energy expansion,
from which it was derived, is divergent.

Example 3. V (z) = ez, f (z) = −ez/2, VS(z) = (e2z/4) − (ez/2).

This exponential potential satisfies conditions (i) of section 7 for any N but not (ii) or (iii). For
this potential we have

a1 = − 1
2 (ex − ey) + 1

8 (e2x − e2y), a2 = 1
2 (ex + ey) − 1

4 (e2x + e2y),

a3 = − 1
2 (ex − ey) + 3

8 (e2x − e2y) + 1
12 (e3x − e3y) − 1

64 (e4x − e4y), etc.
(11.11)

The exact Green function has the form

G(x, y; k) = − iπ

2 cos(iπk)
[χ+(x, k) + eπkχ−(x, k)]χ−(y, k), (11.12)

where χ± are defined in terms of the Bessel functions as

χ±(x, k) ≡ i ex/2

√
2

[
Jν±(−i ex/2) + iJ−ν∓(−i ex/2)

]
, ν± ≡ 1

2
± ik. (11.13)

Equation (11.1) with (11.11) gives the correct asymptotic expansion when arg k is fixed in
0 < arg k < π (figure 2). However, this asymptotic expansion is not correct when |k| → ∞
with fixed Im k, irrespective of whether Im k > 0 or Im k = 0. The short-time expansion (9.6)
with gn calculated from (11.11) is shown in figure 3.

Example 4. V (z) = 2 log cosh z, f (z) = −tanh z, VS(z) = 1 − 2 sech2z.

This V (x) tends to +∞ linearly as x → ±∞. Both f (+∞) and f (−∞) are finite, and
conditions (iii) of section 7 are satisfied for any N. In this case, we have

a1 = x − y − 2(tanh x − tanh y), a2 = (sech x)2 + (sech y)2 − (tanh x)2 − (tanh y)2,

a3 = −x + y + 4
3 (tanh x − tanh y) + 8

3 [(sech x)2 tanh x − (sech y)2 tanh y], etc. (11.14)

The exact G for this potential is

G(x, y; k) = k

2π
√

k2 − 1

�(α)�
(

1
2 − α

)
�(β)�

(
1
2 − β

)
cos απ sin βπ

�(α − β)�(β − α) sin[(β − α)π ]

η+(x)η−(y)

cosh x cosh y
,

(11.15)

where

η±(x, k) ≡ F

(
α, β,

1

2
;− sinh2 x

)

∓ 2
�

(
1
2 + α

)
�(1 − β)

�(α)�
(

1
2 − β

) sinh xF

(
α +

1

2
, β +

1

2
,

3

2
;−sinh2 x

)
, (11.16)
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Figure 2. The imaginary and real parts of log G(x, y; k) − ik(x − y) for the potential V (z) = ez

(example 3), (a) plotted as functions of |k|, with arg k fixed at π/4; x = 0.8, y = 0; (b) plotted
as functions of x, with k = 2.5 exp(iπ/4), y = 0. Solid lines: the exact values. Dashed lines:
expansion (11.1) to order 1/kN (N = 2 and 8).
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Figure 3. The series 1 +
∑N

n=1 gnt
n for the potential V (z) = ez (example 3), plotted as a function

of t with various N. (a) x = 0.7, y = 0; (b) x = 3, y = 0.

with α ≡ 1
2 (−1 − i

√
k2 − 1) and β ≡ 1

2 (−1 + i
√

k2 − 1). Here F is the hypergeometric

function defined by F(α, β, γ ; z) = �(γ )

�(α)�(β)

∑∞
n=0

�(α+n)�(β+n)

�(γ +n)
1
n!z

n. Sincef (±∞) are finite,
expansion (11.1) with (11.14) is valid even when Im k = 0 (figure 4). As in example 1, the
infinite series (11.1) is convergent for |k| > 1.
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Figure 4. The imaginary and real parts of log G(x, y; k) − ik(x − y) for the potential
V (z) = 2 log cosh z (example 4), (a) plotted as functions of real k, with x = 0.5, y = 0;
(b) plotted as functions of x, with k = 1.2, y = 0. Solid lines: the exact values. Dashed lines:
expansion (11.1) to order 1/kN . (Since k is real, N = 2, 4, 8 are the same as N = 1, 3, 7,
respectively, for the imaginary part.)

Example 5. V (z) = 2|z|, f (z) = 1 − 2θ(z), VS(z) = 1 − 2δ(z).

This is an example where f (z) has a jump at z = 0. This belongs to the case of (7.1) with
M = 0 and C = −2. For y < 0 < x, the exact Green function is

G(x, y; k) = i +
√

k2 − 1

k
exp

[
i
√

k2 − 1(x − y)
]
, (11.17)

and hence we have, as |k| → ∞ (0 � arg k � π),

log G(x, y; k) = ik(x − y) +
1

2ik
(x − y − 2) − 1

(2ik)3

(
x − y − 4

3

)
+ O(1/|k|5). (11.18)

On the other hand, a1 and a2 are obtained from (10.5) as

a1 =
∫ x

y

[1 − 2δ(z)] dz = x − y − 2, a2 = −1 + 2δ(x) − 1 + 2δ(y) = −2. (11.19)

Comparing (11.19) with (11.18), we can see that a1 is the correct coefficient of the expansion
but a2 is not. As shown in section 8, the coefficient a2 needs to be corrected by C2/2. Since
a2 + C2/2 = 0, we can see that (8.10) indeed agrees with (11.18).

Example 6.

V (z) =
{

ez

1 + z,
f (z) =

{−ez/2
−1/2,

VS(z) =
{
(e2z/4) − (ez/2) (z < 0)

1/4 (z > 0).
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Figure 5. The graphs of |kN�N(x, y; k)| for examples 6 and 7, as functions of real k. (N = 3
and 4.) (a) Example 6: x = 0.5, y = −0.5. (b) Example 7: x = 0.5, y = −0.5.

This example belongs to the case of (7.1) with M = 1 and C = −1/2. Now f (z) is continuous
and f ′(z) has a jump at z = 0. For y < 0 < x, the exact G has the form

G(x, y; k) = −2
√

2ik eiKxχ−(y, k)

[K − iν−]Jν−(−i/2) + (iK + ν+)J−ν+(−i/2)
(11.20)

with K ≡
√

k2 − (1/4), where χ− and ν± are defied by (11.13). As shown in figure 5(a), we
can check that (6.4) holds for N � 3 but not for N � 4. It can be seen that the limit of |k4�4|
as |k| → ∞ is 2−5C2 � 0.0078 as predicted by (8.9). The coefficients of the expansion for
y < 0 < x are obtained from (6.2) as

a1 = 1
8 (−e2y + 4ey + 2x − 3), a2 = − 1

4 (e2y − 2ey + 1),

a3 = 1
192 (3e4y − 16e3y − 72e2y + 96ey − 12x − 11),

a4 = 1
8 (e4y − 4e3y − 4e2y + 4ey + 1), etc.

(11.21)

Since both f (−∞) and f (+∞) are finite, expansion (11.1) with (11.21) is correct to order
1/k3 for Im k � 0. The correct expansion to order 1/k4 is obtained by adding −C2/2 = −1/8
to a4 as in (8.10). (See figure 6(a).)

For 0 < y < x, the exact Green function is

G(x, y; k) = k

K

(
e−iKy +

A−
A+

eiKy

)
eiKx, (11.22)

where

A± ≡
(

i ± ν−
K

)
Jν−(−i/2) −

(
1 ∓ i

ν+

K

)
J−ν+(−i/2). (11.23)

The an obtained from (6.2) for 0 < y < x are

a1 = 1
4 (x − y), a2 = − 1

2 , a3 = − 1
16 (x − y), etc. (11.24)

We can show that the quantity A−/A+ is O(1/|k|2) as |k| → ∞ (0 � arg k � π). Therefore,
from (11.22) we can see that (11.1) with (11.24) is correct only up to order 1/k when Im k = 0
(figure 6(b)). For ε � arg k � π − ε, this asymptotic expansion is correct to any order since
eiKy in (11.22) vanishes faster than any power of 1/k.
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Figure 6. The imaginary and real parts of log G(x, y; k) − ik(x − y) for the potential of example
6, plotted as functions of real k; (a) x = 0.5, y = −1; (b) x = 2, y = 1. In (a), the dashed curve
labelled ‘N = 4’ shows the expansion to order 1/k4 with the correction term −C2/2 added to a4
as in equation (8.10). In (b), the envelope of the oscillation of Re(log G) falls off like 1/k2.

Example 7.

V (z) = (sgn z)[(1 + |z|)1/2 − 1], f (z) = − 1
4 (1 + |z|)−1/2,

VS(z) = 1
16 (1 + |z|)−1 + 1

8 (sgn z)(1 + |z|)−3/2.

This is another case where f ′(z) has a finite jump at z = 0. The exact Green function for
y < 0 < x can be expressed in terms of confluent hypergeometric functions as

G(x, y; k) = 2ikζ+(x, k)ζ−(y, k)

ζ ′
+(0, k)ζ−(0, k) − ζ+(0, k)ζ ′−(0, k)

, (11.25)

where

ζ±(x, k) ≡ eik(1±x)

{
q1/2�(q)

[
F

(
q,

1

2
;−2ik(1 ± x)

)

∓
√

1 ± x

2
F

(
q + 1,

3

2
;−2ik(1 ± x)

)]

±�

(
q +

1

2

)[
F

(
q +

1

2
,

1

2
;−2ik(1 ± x)

)

∓
√

1 ± x

2
F

(
q +

1

2
,

3

2
;−2ik(1 ± x)

)]}
(11.26)
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Figure 7. The imaginary and real parts of log G(x, y; k) − ik(x − y) for the potential of
example 7, plotted as functions of real k; x = 0.5, y = −0.5.

with q ≡ i/(32k), and ζ ′
±(x, k) ≡ (∂/∂x)ζ±(x, k). For y < 0 < x, the coefficients of the

expansion calculated by our method are

a1 = 1
16 [log(1 + x) + log(1 − y)] − 1

4 [(1 + x)−1/2 − (1 − y)−1/2],

a2 = − 1
16 [(1 + x)−1 + (1 − y)−1] − 1

8 [(1 + x)−3/2 − (1 − y)−3/2], etc.
(11.27)

This, too, is a case of (7.1) with M = 1, and so (6.4) holds for N � 3 but not for N � 4.
Expansion (11.1) is now correct to order 1/k3 for Im k � 0 (figure 7). We can see from
figure 5(b) that |k4�4| indeed approaches the predicted value 2−5C2 � 0.0020 as |k| → ∞.
(In this case, C = 1/4.)

Example 8. VS(z) = |z|.
Here we consider the case where VS is given, and where E0 �= 0 (see section 10). For
y < 0 < x, the coefficients an are obtained from (10.5) (or (10.4) and (6.2)) as

a1 = 1
2 (x2 + y2), a2 = −x + y, a3 = 2 − 1

3 (x3 − y3), a4 = 2(x2 + y2),

a5 = 1
2 (x4 + y4) − 5(x − y), a6 = − 16

3 (x3 − y3) + 10, etc.

(11.28)

The exact Green function for y < 0 < x is

G(x, y; k) = ikAi(x − k2)Ai(−y − k2)

Ai(−k2)Ai′(−k2)
, (11.29)

where Ai(z) is the Airy function and Ai′(z) is its derivative. From the second equation of
(10.8) we have f (z) = (d/dz) log Ai(|z| − E0), where E0 is the smallest number satisfying
Ai′(−E0) = 0. (Numerically, E0 � 1.019.) It is easy to see that f ′′(0+) − f ′′(0−) = 2, so
that this is a case of (7.1) with M = 2, C = 2. Expansion (11.1) with (11.28) is correct to
order 1/k5 for Im k � ε. (Conditions (ii) of section 7 are satisfied since f (z) behaves like
|z|1/2 as |z| → ∞. This expansion is not valid for Im k = 0.) We can also check that the
correct coefficient of order 1/k6 is not a6 but a6 + C2/2 = a6 + 2.

12. Summary and remarks

In this paper, we studied the high-energy asymptotic behaviour of the Green function. The
expansion of log G in powers of 1/k (with G defined by (2.7) and (2.5)) is given by (6.1).



High-energy asymptotic expansion of the Green function 8705

The coefficients of the expansion (equations (6.2) and (4.3)) are expressed in terms of the
coefficients c̃n for the expansion of the generalized reflection coefficient, which are calculated
by using formula (3.8) with (3.2). The remainder term �N is also expressed in terms of c̃n

(see (6.3), (5.3), (4.12), (4.9), (4.6) and (3.9)). Sufficient conditions for the validity of the
expansion to order N (equation (6.4)) are given by (i), (ii), (iii) of section 7. These are not
necessary conditions. Equation (6.4) holds under broader conditions as shown in section 8.

We assumed that the potential V (x) is monotone for sufficiently large |x|, but this is not
an essential restriction for our formalism. The formulae for the coefficients of the expansion
and the remainder term are valid for any potential, as long as these quantities make sense. The
particular shape of the potential is relevant only to the conditions for the validity of (6.4). The
above-mentioned assumption on the potential is used only in deriving the conditions for (3.12)
quoted at the end of section 3. Even for other kinds of potentials, we can use the same method
to derive the criterion for (6.4). For example, in this paper we excluded the cases where V (x)

oscillates indefinitely as |x| → ∞, but our method can be applied to these cases as well, if
only we study the validity of (3.12) (and its analogue for Rl) for such potentials in a similar
way as in [19].

Appendix A. Properties of scattering coefficients for finite intervals

Here we summarize some properties of the transmission and reflection coefficients for finite
intervals. (For details, see [22] and references therein.) First, it is obvious that

τ(x, x; k) = 1, Rr(x, x; k) = 0, Rl(x, x; k) = 0. (A.1)

Let us assume that f is piecewise smooth. We have, for finite x and y,

τ(x, y; k) = eik(x−y)[1 + O(1/|k|)], (A.2a)

Rr(x, y; k) = O(1/|k|), Rl(x, y; k) = O(1/|k|), (A.2b)

as |k| → ∞ (0 � arg k � π). The first equation of (A.2b) is a special case of (3.3) with
N = 1. For finite x and y, equations (A.2) can be derived more directly from integral
representations of the scattering coefficients. (See equations (1.14) of [22]. Alternatively,
we can use equations (3.8) of [22] and the asymptotic forms of the functions α± and β± to
derive (A.2).)

From equations (3.5) and (3.8) of [22], we can derive the differential equations

∂

∂x
τ(x, y; k) = ikτ(x, y; k) − f (x)Rr(x, y; k)τ (x, y; k), (A.3a)

∂

∂y
τ(x, y; k) = −ikτ(x, y; k) − f (y)Rl(x, y; k)τ (x, y; k), (A.3b)

∂

∂x
Rr(x, y; k) = 2ikRr(x, y; k) + f (x)

[
1 − R2

r (x, y; k)
]
, (A.3c)

∂

∂y
Rr(x, y; k) = −f (y)τ 2(x, y; k), (A.3d)

∂

∂x
Rl(x, y; k) = −f (x)τ 2(x, y; k), (A.3e)

∂

∂y
Rl(x, y; k) = −2ikRl(x, y; k) + f (y)

[
1 − R2

l (x, y; k)
]
. (A.3f )
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From (A.2) and (A.3) it follows that, as |k| → ∞ (0 � arg k � π),

∂

∂z

[
τ(x, z)

1 + Rr(x, z)

]2

= −2ik

[
τ(x, z)

1 + Rr(x, z)

]2

+ 2f (z) e4ik(x−z) + o(1), (A.4a)

∂

∂z

[
τ(z, x)

1 + Rl(z, x)

]2

= 2ik

[
τ(z, x)

1 + Rl(z, x)

]2

+ 2f (z) e4ik(z−x) + o(1), (A.4b)

∫ b

a

[
τ(z, c)

1 + Rr(z, c)

]2

dz = 1

2ik

{[
τ(b, c)

1 + Rr(b, c)

]2

−
[

τ(a, c)

1 + Rr(a, c)

]2
}

+ o(1/|k|), (A.5a)

∫ b

a

[
τ(c, z)

1 + Rl(c, z)

]2

dz = 1

2ik

{
−

[
τ(c, b)

1 + Rl(c, b)

]2

+

[
τ(c, a)

1 + Rl(c, a)

]2
}

+ o(1/|k|). (A.5b)

Appendix B. Derivation of the short-time expansion

Let X ≡ x − y. When (9.1) is substituted into (9.4), the integral of the mth-order term is
proportional to∫ ∞

−∞

eiκXe−iωt

κm+1
dω = −2i

e−X2/(4t)

√
t

∫ ∞

−∞

(
2t

iX

)m (
1 +

2
√

t

iX
p

)−m

e−p2
dp, (B.1)

where we have changed the variable of integration from ω to p ≡ (κ/
√

t) − [iX/(t
√

t)], and
deformed the contour of integration. The right-hand side of (B.1) can be expanded in powers
of t by using the formula of the Taylor expansion

(1 + α)−m =
M∑

j=0

(m + j − 1)!

j !(m − 1)!
(−1)jαj +

(M + m)!

(M + 1)!(m − 1)!

(−1)M+1αM+1

(1 + θα)M+m+1
, (B.2)

where M is an arbitrary positive integer, and 0 < θ < 1. Applying (B.2) to (B.1), and carrying
out the integration of each term, we have∫ ∞

−∞

eiκX e−iωt

κm+1
dω = −2i

e−X2/(4t)

√
t

{
√

π

M∑
j=0

2m+j (2j + m − 1)!

(m − 1)!(2j)!

t j+m

(iX)2j+m

+
2m+2M+2(2M + m + 1)!

(m − 1)!(2M + 2)!

tM+m+1

(iX)2M+m+2

∫ ∞

−∞

p2M+2 e−p2
dp[

1 + 2
√

t

iX θp
]2M+m+2

}
. (B.3)

From (9.4), (9.1) and (B.3), we obtain expansion (9.6) with (9.7). The remainder term �̃N

can be written as

�̃N = 1√
π

∫ ∞

−∞
�′

N

(
x, y; p√

t
+

iX

2t

)
e−p2

dp

+
tN+1

√
π

N∑
m=1

bm

X2N−m+2

(−1)N+122N−2m+2(2N − m + 1)!

(m − 1)!(2N − 2m + 2)!

∫ ∞

−∞

p2N−2m+2 e−p2
dp[

1 + 2
√

t

iX θmp
]2N−m+2 ,

(B.4)

where 0 < θm < 1. The second term of (B.4) is obviously O(tN+1) as t → 0. Assuming that
X �= 0, the first term is o(tN) as t → 0 if �′

N(x, y; k) = o(1/|k|N) as |k| → ∞ in the region
ε � arg k � π − ε.
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